Мифология

Мифы, легенды, притчи и сказания

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Сабин Баринг-Гоулд Мифы и легенды Средневековья

В той же самой статье говорится, что индийский крест тоже означал фаллос, в то время как символ этот является совершенно однозначным и ясным, если обратиться к иллюстрациям Мюллера в «Верованиях, знаниях и культуре древних индийцев».
Приложение С
Рок чисел
Законы, правящие числами, озадачивают неподготовленный ум, а результаты, которые получаются при подсчетах, бывают поразительными. Поэтому нет нужды удивляться тому факту, что числа сопровождают всякие предрассудки.
Но даже для тех, кто знаком с исчислениями, существует множество загадочных и необъяснимых вещей, которые убедительно может объяснить только хороший математик. Простой человек видит, что числа подчиняются определенным законам, но не понимает, почему так происходит, и сам факт этой невозможности объяснить способствует тому, что вокруг чисел возникает атмосфера загадочности, внушающая благоговение.
Например, особенности числа 9, открытые, как я полагаю, В. Грином, который умер в 1794 году, являются необъяснимыми для всех, кроме математиков. Свойство, о котором я говорю, состоит в том, что когда 9 умножается на 2, 3, 4, 5, 6 и так далее, то простые числа, составляющие произведение, при сложении дадут девять. Итак:
2 x 9 = 18, а 1 + 8 = 9
3 x 9 = 27, а 2 + 7 = 9
4 x 9 = 36, а 3 + 6 = 9
5 x 9 = 45, а 4 + 5 = 9
6 x 9 = 54, а 5 + 4 = 9
7 x 9 = 63, а 6 + 3 = 9
8 x 9 = 72, а 7 + 2 = 9
9 x 9 = 81, а 8 + 1 = 9
10 x 9 = 90, а 9 + 0 = 9.
Заметим, что 9 x 11 дает 99, и сумма чисел в этом случае равна 18, а не 9, но зато при сложении 1 и 8 получается 9.
9 x 12 = 108, и 1 + 0 + 8 = 9
9 x 13 = 117, и 1 + 1 + 7 = 9
9 x 14 = 126, и 1 + 2 + 6 = 9
И так далее до бесконечности.
Господин де Меван открыл другое свойство того же числа 9. Если поменять местами цифры, составляющие некое число, и вычесть полученное число из первоначального, то разность будет равна или же кратна 9 и сумма чисел, составляющих эту кратную 9 разность, будет также равна 9.
Например, возьмем число 21, поменяем цифры местами и получим 12, вычтем 12 из 21, разность будет равна 9. Возьмем 63, переставим цифры и отнимем 36 из 63, получим 27, кратное 9, а 2 + 7 = 9. Теперь возьмем 13, преобразовав его, получим 31, разность этих чисел составляет 18, то есть дважды девять.
Такое же свойство, наблюдаемое у двух чисел, измененных подобным образом, обнаруживается у тех же чисел, возведенных в степень.
Возьмем снова 21 и 12. 21 в квадрате дает 441, а квадрат 12 равен 144. Разность при вычитании 144 из 441 составляет 297, кратное 9. Кроме того, числа, составляющие результаты этих возведений в степень, при сложении дают 9. 21 в кубе равно 9261, а 12 в кубе будет 1728, их разность составляет 7533, кратное 9.
Число 37 также имеет некоторые замечательные свойства, когда его умножают на 3 или на число кратное 3 (до 27). Произведение в этом случае составляют три одинаковые цифры. Зная об этом свойстве числа 37, искать произведение становится проще, ибо достаточно просто умножить первую цифру умножаемого на первую цифру множителя[133]. Дальнейшее умножение уже бессмысленно, поскольку достаточно просто написать справа от полученной цифры такую же цифру еще дважды – ибо одна и та же цифра будет занимать место единицы, десятка и сотни.

 

Дополнительное меню

Яндекс.Метрика